Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Role of glutaredoxin 2 and cytosolic thioredoxins in cysteinyl-based redox modification of the 20S proteasome.

Identifieur interne : 000B72 ( Main/Exploration ); précédent : 000B71; suivant : 000B73

Role of glutaredoxin 2 and cytosolic thioredoxins in cysteinyl-based redox modification of the 20S proteasome.

Auteurs : Gustavo M. Silva [Brésil] ; Luis E S. Netto ; Karen F. Discola ; Gilberto M. Piassa-Filho ; Daniel C. Pimenta ; José A. Bárcena ; Marilene Demasi

Source :

RBID : pubmed:18435761

Descripteurs français

English descriptors

Abstract

The yeast 20S proteasome is subject to sulfhydryl redox alterations, such as the oxidation of cysteine residues (Cys-SH) into cysteine sulfenic acid (Cys-SOH), followed by S-glutathionylation (Cys-S-SG). Proteasome S-glutathionylation promotes partial loss of chymotrypsin-like activity and post-acidic cleavage without alteration of the trypsin-like proteasomal activity. Here we show that the 20S proteasome purified from stationary-phase cells was natively S-glutathionylated. Moreover, recombinant glutaredoxin 2 removes glutathione from natively or in vitro S-glutathionylated 20S proteasome, allowing the recovery of chymotrypsin-like activity and post-acidic cleavage. Glutaredoxin 2 deglutathionylase activity was dependent on its entry into the core particle, as demonstrated by stimulating S-glutathionylated proteasome opening. Under these conditions, deglutathionylation of the 20S proteasome and glutaredoxin 2 degradation were increased when compared to non-stimulated samples. Glutaredoxin 2 fragmentation by the 20S proteasome was evaluated by SDS-PAGE and mass spectrometry, and S-glutathionylation was evaluated by either western blot analyses with anti-glutathione IgG or by spectrophotometry with the thiol reactant 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole. It was also observed in vivo that glutaredoxin 2 was ubiquitinated in cellular extracts of yeast cells grown in glucose-containing medium. Other cytoplasmic oxido-reductases, namely thioredoxins 1 and 2, were also active in 20S proteasome deglutathionylation by a similar mechanism. These results indicate for the first time that 20S proteasome cysteinyl redox modification is a regulated mechanism coupled to enzymatic deglutathionylase activity.

DOI: 10.1111/j.1742-4658.2008.06441.x
PubMed: 18435761


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Role of glutaredoxin 2 and cytosolic thioredoxins in cysteinyl-based redox modification of the 20S proteasome.</title>
<author>
<name sortKey="Silva, Gustavo M" sort="Silva, Gustavo M" uniqKey="Silva G" first="Gustavo M" last="Silva">Gustavo M. Silva</name>
<affiliation wicri:level="4">
<nlm:affiliation>Instituto Butantan, Laboratório de Bioquímica e Biofísica, São Paulo, Brazil, and Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Instituto Butantan, Laboratório de Bioquímica e Biofísica, São Paulo, Brazil, and Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo</wicri:regionArea>
<placeName>
<settlement type="city">São Paulo</settlement>
<region type="state">État de São Paulo</region>
</placeName>
<orgName type="university">Université de São Paulo</orgName>
</affiliation>
</author>
<author>
<name sortKey="Netto, Luis E S" sort="Netto, Luis E S" uniqKey="Netto L" first="Luis E S" last="Netto">Luis E S. Netto</name>
</author>
<author>
<name sortKey="Discola, Karen F" sort="Discola, Karen F" uniqKey="Discola K" first="Karen F" last="Discola">Karen F. Discola</name>
</author>
<author>
<name sortKey="Piassa Filho, Gilberto M" sort="Piassa Filho, Gilberto M" uniqKey="Piassa Filho G" first="Gilberto M" last="Piassa-Filho">Gilberto M. Piassa-Filho</name>
</author>
<author>
<name sortKey="Pimenta, Daniel C" sort="Pimenta, Daniel C" uniqKey="Pimenta D" first="Daniel C" last="Pimenta">Daniel C. Pimenta</name>
</author>
<author>
<name sortKey="Barcena, Jose A" sort="Barcena, Jose A" uniqKey="Barcena J" first="José A" last="Bárcena">José A. Bárcena</name>
</author>
<author>
<name sortKey="Demasi, Marilene" sort="Demasi, Marilene" uniqKey="Demasi M" first="Marilene" last="Demasi">Marilene Demasi</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18435761</idno>
<idno type="pmid">18435761</idno>
<idno type="doi">10.1111/j.1742-4658.2008.06441.x</idno>
<idno type="wicri:Area/Main/Corpus">000B95</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000B95</idno>
<idno type="wicri:Area/Main/Curation">000B95</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000B95</idno>
<idno type="wicri:Area/Main/Exploration">000B95</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Role of glutaredoxin 2 and cytosolic thioredoxins in cysteinyl-based redox modification of the 20S proteasome.</title>
<author>
<name sortKey="Silva, Gustavo M" sort="Silva, Gustavo M" uniqKey="Silva G" first="Gustavo M" last="Silva">Gustavo M. Silva</name>
<affiliation wicri:level="4">
<nlm:affiliation>Instituto Butantan, Laboratório de Bioquímica e Biofísica, São Paulo, Brazil, and Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Instituto Butantan, Laboratório de Bioquímica e Biofísica, São Paulo, Brazil, and Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo</wicri:regionArea>
<placeName>
<settlement type="city">São Paulo</settlement>
<region type="state">État de São Paulo</region>
</placeName>
<orgName type="university">Université de São Paulo</orgName>
</affiliation>
</author>
<author>
<name sortKey="Netto, Luis E S" sort="Netto, Luis E S" uniqKey="Netto L" first="Luis E S" last="Netto">Luis E S. Netto</name>
</author>
<author>
<name sortKey="Discola, Karen F" sort="Discola, Karen F" uniqKey="Discola K" first="Karen F" last="Discola">Karen F. Discola</name>
</author>
<author>
<name sortKey="Piassa Filho, Gilberto M" sort="Piassa Filho, Gilberto M" uniqKey="Piassa Filho G" first="Gilberto M" last="Piassa-Filho">Gilberto M. Piassa-Filho</name>
</author>
<author>
<name sortKey="Pimenta, Daniel C" sort="Pimenta, Daniel C" uniqKey="Pimenta D" first="Daniel C" last="Pimenta">Daniel C. Pimenta</name>
</author>
<author>
<name sortKey="Barcena, Jose A" sort="Barcena, Jose A" uniqKey="Barcena J" first="José A" last="Bárcena">José A. Bárcena</name>
</author>
<author>
<name sortKey="Demasi, Marilene" sort="Demasi, Marilene" uniqKey="Demasi M" first="Marilene" last="Demasi">Marilene Demasi</name>
</author>
</analytic>
<series>
<title level="j">The FEBS journal</title>
<idno type="ISSN">1742-464X</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cloning, Molecular (MeSH)</term>
<term>Cysteine (chemistry)</term>
<term>Cytosol (metabolism)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Glutaredoxins (physiology)</term>
<term>Glutathione (chemistry)</term>
<term>Glutathione (metabolism)</term>
<term>Hydrolysis (MeSH)</term>
<term>Models, Biological (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Proteasome Endopeptidase Complex (chemistry)</term>
<term>Proteasome Endopeptidase Complex (metabolism)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Thioredoxins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Clonage moléculaire (MeSH)</term>
<term>Cystéine (composition chimique)</term>
<term>Cytosol (métabolisme)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Glutarédoxines (physiologie)</term>
<term>Glutathion (composition chimique)</term>
<term>Glutathion (métabolisme)</term>
<term>Hydrolyse (MeSH)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Proteasome endopeptidase complex (composition chimique)</term>
<term>Proteasome endopeptidase complex (métabolisme)</term>
<term>Régulation de l'expression des gènes fongiques (MeSH)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Thiorédoxines (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Cysteine</term>
<term>Glutathione</term>
<term>Proteasome Endopeptidase Complex</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Cystéine</term>
<term>Glutathion</term>
<term>Proteasome endopeptidase complex</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cytosol</term>
<term>Glutaredoxins</term>
<term>Glutathione</term>
<term>Proteasome Endopeptidase Complex</term>
<term>Saccharomyces cerevisiae</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cytosol</term>
<term>Glutarédoxines</term>
<term>Glutathion</term>
<term>Proteasome endopeptidase complex</term>
<term>Saccharomyces cerevisiae</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Glutarédoxines</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Glutaredoxins</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cloning, Molecular</term>
<term>Gene Expression Regulation, Fungal</term>
<term>Hydrolysis</term>
<term>Models, Biological</term>
<term>Oxidation-Reduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Clonage moléculaire</term>
<term>Hydrolyse</term>
<term>Modèles biologiques</term>
<term>Oxydoréduction</term>
<term>Régulation de l'expression des gènes fongiques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The yeast 20S proteasome is subject to sulfhydryl redox alterations, such as the oxidation of cysteine residues (Cys-SH) into cysteine sulfenic acid (Cys-SOH), followed by S-glutathionylation (Cys-S-SG). Proteasome S-glutathionylation promotes partial loss of chymotrypsin-like activity and post-acidic cleavage without alteration of the trypsin-like proteasomal activity. Here we show that the 20S proteasome purified from stationary-phase cells was natively S-glutathionylated. Moreover, recombinant glutaredoxin 2 removes glutathione from natively or in vitro S-glutathionylated 20S proteasome, allowing the recovery of chymotrypsin-like activity and post-acidic cleavage. Glutaredoxin 2 deglutathionylase activity was dependent on its entry into the core particle, as demonstrated by stimulating S-glutathionylated proteasome opening. Under these conditions, deglutathionylation of the 20S proteasome and glutaredoxin 2 degradation were increased when compared to non-stimulated samples. Glutaredoxin 2 fragmentation by the 20S proteasome was evaluated by SDS-PAGE and mass spectrometry, and S-glutathionylation was evaluated by either western blot analyses with anti-glutathione IgG or by spectrophotometry with the thiol reactant 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole. It was also observed in vivo that glutaredoxin 2 was ubiquitinated in cellular extracts of yeast cells grown in glucose-containing medium. Other cytoplasmic oxido-reductases, namely thioredoxins 1 and 2, were also active in 20S proteasome deglutathionylation by a similar mechanism. These results indicate for the first time that 20S proteasome cysteinyl redox modification is a regulated mechanism coupled to enzymatic deglutathionylase activity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18435761</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>07</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">1742-464X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>275</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2008</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>The FEBS journal</Title>
<ISOAbbreviation>FEBS J</ISOAbbreviation>
</Journal>
<ArticleTitle>Role of glutaredoxin 2 and cytosolic thioredoxins in cysteinyl-based redox modification of the 20S proteasome.</ArticleTitle>
<Pagination>
<MedlinePgn>2942-55</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/j.1742-4658.2008.06441.x</ELocationID>
<Abstract>
<AbstractText>The yeast 20S proteasome is subject to sulfhydryl redox alterations, such as the oxidation of cysteine residues (Cys-SH) into cysteine sulfenic acid (Cys-SOH), followed by S-glutathionylation (Cys-S-SG). Proteasome S-glutathionylation promotes partial loss of chymotrypsin-like activity and post-acidic cleavage without alteration of the trypsin-like proteasomal activity. Here we show that the 20S proteasome purified from stationary-phase cells was natively S-glutathionylated. Moreover, recombinant glutaredoxin 2 removes glutathione from natively or in vitro S-glutathionylated 20S proteasome, allowing the recovery of chymotrypsin-like activity and post-acidic cleavage. Glutaredoxin 2 deglutathionylase activity was dependent on its entry into the core particle, as demonstrated by stimulating S-glutathionylated proteasome opening. Under these conditions, deglutathionylation of the 20S proteasome and glutaredoxin 2 degradation were increased when compared to non-stimulated samples. Glutaredoxin 2 fragmentation by the 20S proteasome was evaluated by SDS-PAGE and mass spectrometry, and S-glutathionylation was evaluated by either western blot analyses with anti-glutathione IgG or by spectrophotometry with the thiol reactant 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole. It was also observed in vivo that glutaredoxin 2 was ubiquitinated in cellular extracts of yeast cells grown in glucose-containing medium. Other cytoplasmic oxido-reductases, namely thioredoxins 1 and 2, were also active in 20S proteasome deglutathionylation by a similar mechanism. These results indicate for the first time that 20S proteasome cysteinyl redox modification is a regulated mechanism coupled to enzymatic deglutathionylase activity.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Silva</LastName>
<ForeName>Gustavo M</ForeName>
<Initials>GM</Initials>
<AffiliationInfo>
<Affiliation>Instituto Butantan, Laboratório de Bioquímica e Biofísica, São Paulo, Brazil, and Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Netto</LastName>
<ForeName>Luis E S</ForeName>
<Initials>LE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Discola</LastName>
<ForeName>Karen F</ForeName>
<Initials>KF</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Piassa-Filho</LastName>
<ForeName>Gilberto M</ForeName>
<Initials>GM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pimenta</LastName>
<ForeName>Daniel C</ForeName>
<Initials>DC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bárcena</LastName>
<ForeName>José A</ForeName>
<Initials>JA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Demasi</LastName>
<ForeName>Marilene</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>04</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>FEBS J</MedlineTA>
<NlmUniqueID>101229646</NlmUniqueID>
<ISSNLinking>1742-464X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>52500-60-4</RegistryNumber>
<NameOfSubstance UI="D013879">Thioredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.25.1</RegistryNumber>
<NameOfSubstance UI="D046988">Proteasome Endopeptidase Complex</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K848JZ4886</RegistryNumber>
<NameOfSubstance UI="D003545">Cysteine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003001" MajorTopicYN="N">Cloning, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003545" MajorTopicYN="N">Cysteine</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003600" MajorTopicYN="N">Cytosol</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="Y">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006868" MajorTopicYN="N">Hydrolysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046988" MajorTopicYN="N">Proteasome Endopeptidase Complex</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013879" MajorTopicYN="N">Thioredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>4</Month>
<Day>26</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>7</Month>
<Day>17</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>4</Month>
<Day>26</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18435761</ArticleId>
<ArticleId IdType="pii">EJB6441</ArticleId>
<ArticleId IdType="doi">10.1111/j.1742-4658.2008.06441.x</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Brésil</li>
</country>
<region>
<li>État de São Paulo</li>
</region>
<settlement>
<li>São Paulo</li>
</settlement>
<orgName>
<li>Université de São Paulo</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Barcena, Jose A" sort="Barcena, Jose A" uniqKey="Barcena J" first="José A" last="Bárcena">José A. Bárcena</name>
<name sortKey="Demasi, Marilene" sort="Demasi, Marilene" uniqKey="Demasi M" first="Marilene" last="Demasi">Marilene Demasi</name>
<name sortKey="Discola, Karen F" sort="Discola, Karen F" uniqKey="Discola K" first="Karen F" last="Discola">Karen F. Discola</name>
<name sortKey="Netto, Luis E S" sort="Netto, Luis E S" uniqKey="Netto L" first="Luis E S" last="Netto">Luis E S. Netto</name>
<name sortKey="Piassa Filho, Gilberto M" sort="Piassa Filho, Gilberto M" uniqKey="Piassa Filho G" first="Gilberto M" last="Piassa-Filho">Gilberto M. Piassa-Filho</name>
<name sortKey="Pimenta, Daniel C" sort="Pimenta, Daniel C" uniqKey="Pimenta D" first="Daniel C" last="Pimenta">Daniel C. Pimenta</name>
</noCountry>
<country name="Brésil">
<region name="État de São Paulo">
<name sortKey="Silva, Gustavo M" sort="Silva, Gustavo M" uniqKey="Silva G" first="Gustavo M" last="Silva">Gustavo M. Silva</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B72 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000B72 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:18435761
   |texte=   Role of glutaredoxin 2 and cytosolic thioredoxins in cysteinyl-based redox modification of the 20S proteasome.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:18435761" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020